Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Antimicrob Steward Healthc Epidemiol ; 2(1): e93, 2022.
Article in English | MEDLINE | ID: covidwho-20233422

ABSTRACT

In a prospective cohort of healthcare personnel (HCP), we measured severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) nucleocapsid IgG antibodies after SARS-CoV-2 infection. Among 79 HCP, 68 (86%) were seropositive 14-28 days after their positive PCR test, and 54 (77%) of 70 were seropositive at the 70-180-day follow-up. Many seropositive HCP (95%) experienced an antibody decline by the second visit.

2.
Open Forum Infect Dis ; 9(11): ofac617, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2307914

ABSTRACT

Background: Infectious diseases physicians are leaders in assessing the health risks in a variety of community settings. An understudied area with substantial controversy is the safety of dental aerosols. Previous studies have used in vitro experimental designs and/or indirect measures to evaluate bacteria and viruses from dental surfaces. However, these findings may overestimate the occupational risks of dental aerosols. The purpose of this study was to directly measure dental aerosol composition to assess the health risks for dental healthcare personnel and patients. Methods: We used a variety of aerosol instruments to capture and measure the bacterial, viral, and inorganic composition of aerosols during a variety of common dental procedures and in a variety of dental office layouts. Equipment was placed in close proximity to dentists during each procedure to best approximate the health risk hazards from the perspective of dental healthcare personnel. Devices used to capture aerosols were set at physiologic respiration rates. Oral suction devices were per the discretion of the dentist. Results: We detected very few bacteria and no viruses in dental aerosols-regardless of office layout. The bacteria identified were most consistent with either environmental or oral microbiota, suggesting a low risk of transmission of viable pathogens from patients to dental healthcare personnel. When analyzing restorative procedures involving amalgam removal, we detected inorganic elements consistent with amalgam fillings. Conclusions: Aerosols generating from dental procedures pose a low health risk for bacterial and likely viral pathogens when common aerosol mitigation interventions, such as suction devices, are employed.

3.
Antimicrobial stewardship & healthcare epidemiology : ASHE ; 2(1), 2022.
Article in English | EuropePMC | ID: covidwho-2147131

ABSTRACT

In a prospective cohort of healthcare personnel (HCP), we measured severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) nucleocapsid IgG antibodies after SARS-CoV-2 infection. Among 79 HCP, 68 (86%) were seropositive 14–28 days after their positive PCR test, and 54 (77%) of 70 were seropositive at the 70–180-day follow-up. Many seropositive HCP (95%) experienced an antibody decline by the second visit.

4.
Front Cell Infect Microbiol ; 12: 804175, 2022.
Article in English | MEDLINE | ID: covidwho-1902926

ABSTRACT

Immunocompromised adults can have prolonged acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive RT-PCR results, long after the initial diagnosis of coronavirus disease 2019 (COVID-19). This study aimed to determine if SARS-CoV-2 virus can be recovered in viral cell culture from immunocompromised adults with persistently positive SARS-CoV-2 RT-PCR tests. We obtained 20 remnant SARS-CoV-2 PCR positive nasopharyngeal swabs from 20 immunocompromised adults with a positive RT-PCR test ≥14 days after the initial positive test. The patients' 2nd test samples underwent SARS-CoV-2 antigen testing, and culture with Vero-hACE2-TMPRSS2 cells. Viral RNA and cultivable virus were recovered from the cultured cells after qRT-PCR and plaque assays. Of 20 patients, 10 (50%) had a solid organ transplant and 5 (25%) had a hematologic malignancy. For most patients, RT-PCR Ct values increased over time. There were 2 patients with positive viral cell cultures; one patient had chronic lymphocytic leukemia treated with venetoclax and obinutuzumab who had a low viral titer of 27 PFU/mL. The second patient had marginal zone lymphoma treated with bendamustine and rituximab who had a high viral titer of 2 x 106 PFU/mL. Most samples collected ≥7 days after an initial positive SARS-CoV-2 RT-PCR had negative viral cell cultures. The 2 patients with positive viral cell cultures had hematologic malignancies treated with chemotherapy and B cell depleting therapy. One patient had a high concentration titer of cultivable virus. Further data are needed to determine risk factors for persistent viral shedding and methods to prevent SARS-CoV-2 transmission from immunocompromised hosts.


Subject(s)
COVID-19 , SARS-CoV-2 , Cell Culture Techniques , Humans , Immunocompromised Host , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction
5.
J Appl Lab Med ; 6(6): 1452-1462, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1493847

ABSTRACT

BACKGROUND: The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patient samples is of critical importance in the management of patients and monitoring transmission in the population. However, data on the analytical performance characteristics for detection of SARS-CoV-2 in clinical specimens between individual targets within the same platform, and among different analytical platforms, are limited. METHODS: Here we evaluated the performance of 6 different sample-to-answer SARS-CoV-2 detection methods-Roche cobas 6800, Cepheid GeneXpert, Diasorin Simplexa, Luminex Aries emergency use authorization (EUA), Luminex Aries research use only (RUO), and bioMérieux BioFire-in clinical specimens with a range of viral loads. RESULTS: The positive percentage agreement between the Roche cobas 6800 and GeneXpert was 100%, Diasorin 95%, Aries EUA 74%, Aries RUO 83%, and BioFire 97%. Notably, in samples with cycle threshold (Ct) values below 30 for the E gene on the Roche cobas 6800 platform, we found 100% positive agreement among all platforms. Given these results, we examined the distribution of over 10 000 Ct values of all positive specimens from individuals at our institution on the Roche cobas platform. Nearly 60% of specimens from asymptomatic individuals had a PCR Ct value >30 as measured using the cobas 6800 assay E gene. CONCLUSIONS: Our results demonstrate performance characteristics between different platforms by Ct value and provide data regarding the distribution of viral RNA present in positive specimens.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Sensitivity and Specificity
6.
J Appl Lab Med ; 7(3): 727-736, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1398106

ABSTRACT

BACKGROUND: Saliva has garnered great interest as an alternative specimen type for molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Data are limited on the relative performance of different molecular methods using saliva specimens and the relative sensitivity of saliva to nasopharyngeal (NP) swabs. METHODS: To address the gap in knowledge, we enrolled symptomatic healthcare personnel (n = 250) from Barnes-Jewish Hospital/Washington University Medical Center and patients presenting to the Emergency Department with clinical symptoms compatible with coronavirus disease 2019 (COVID-19; n = 292). We collected paired saliva specimens and NP swabs. The Lyra SARS-CoV-2 assay (Quidel) was evaluated on paired saliva and NP samples. Subsequently we compared the Simplexa COVID-19 Direct Kit (Diasorin) and a modified SalivaDirect (Yale) assay on a subset of positive and negative saliva specimens. RESULTS: The positive percent agreement (PPA) between saliva and NP samples using the Lyra SARS-CoV-2 assay was 63.2%. Saliva samples had higher SARS-CoV-2 cycle threshold values compared to NP swabs (P < 0.0001). We found a 76.47% (26/34) PPA for Simplexa COVID-19 Direct Kit on saliva and a 67.6% (23/34) PPA for SalivaDirect compared to NP swab results. CONCLUSION: These data demonstrate molecular assays have variability in performance for detection of SARS-CoV-2 in saliva.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Delivery of Health Care , Emergency Service, Hospital , Humans , Nasopharynx , SARS-CoV-2/genetics , Saliva , Specimen Handling/methods
7.
J Clin Microbiol ; 59(7): e0007521, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1276884

ABSTRACT

Diagnostic assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential for patient management, infection prevention, and the public health response for coronavirus disease 2019 (COVID-19). The efficacy and reliability of these assays are of paramount importance in both tracking and controlling the spread of the virus. Real-time reverse transcription-PCR (RT-PCR) assays rely on a fixed genetic sequence for primer and probe binding. Mutations can potentially alter the accuracy of these assays and lead to unpredictable analytical performance characteristics and false-negative results. Here, we identify a G-to-U transversion (nucleotide 26372) in the SARS-CoV-2 E gene in three specimens with reduced viral detection efficiency using a widely available commercial assay. Further analysis of the public GISAID repository led to the identification of 18 additional genomes with this mutation, which reflect five independent mutational events. This work supports the use of dual-target assays to reduce the number of false-negative PCR results.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , Sensitivity and Specificity
8.
J Appl Lab Med ; 6(5): 1281-1286, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1101853

ABSTRACT

BACKGROUND: Widespread testing of SARS-CoV-2 has resulted in shortages of collection devices and transport media. We evaluated the stability of flocked swabs inoculated with SARS-CoV-2-containing specimen incubated dry (i.e., without transport medium) at room temperature. METHODS: A pool of SARS-CoV-2 positive specimen was used to inoculate flocked swabs. Five swabs were placed immediately into universal transport media (UTM) following inoculation, and tested immediately (day 0). Fifteen of the swabs were placed into sterile 15-mL conical tubes and incubated at room temperature for 1, 2, or 7 days. Following incubation, swabs were hydrated in separate vials of UTM and tested. This protocol was repeated for viral transport media (VTM) and saline. As a comparison, a series of swabs was prepared and tested in parallel, but stored in the corresponding liquid transport media (UTM, VTM, or saline) and incubated at room temperature. Testing was performed at 1, 2, and 7 days postinoculation in duplicate. All molecular testing was performed using the Roche cobas SARS-CoV-2 assay. RESULTS: All dry swabs tested on days 1, 2, and 7 provided results that were within 2 cycle thresholds (CTs) of the average CT values for swabs hydrated in the same media and tested on day 0. There was no statistical difference in CT values between swabs incubated in liquid media versus dry swabs incubated at room temperature prior to hydration in liquid media. CONCLUSIONS: The utilization of "dry swabs" may simplify specimen collection, negate the need for liquid transport media, and mitigate safety risks while preserving the accuracy of testing.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL